中国海光

第16卷 第8期

TiO₂/SiO₂、ZrO₂/SiO₂多层介质膜光学 损耗及激光损伤研究

吴周令 范正修 (中国科学院上海光机所)

Measurement of optical loss and damage resistance of TiO₂/SiO₂ and ZrO₂/SiO₂ laser mirrors

Wu Zhouling, Fan Zhengxiu (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

提要:以TiO₂/SiO₂及ZrO₂/SiO₂多层介质膜为例,测试了不同工艺条件及不 同膜系结构下薄膜样品的光学损耗及激光损伤阈值,同时对实验结果作了初步的分 析讨论。

关键词:光学薄膜,激光损伤,光学损耗

一、引言

任何光学薄膜都存在一定的损耗,这种 损耗包括吸收与散射两部分,它们都与光学 薄膜的激光损伤有紧密的联系^[1,2]。正确认 识这种联系及其机制,有助于进一步揭示光 学薄膜的激光损伤机理,提高膜层的光学质 量。本文基于这一目的,以TiO₂/SiO₂及ZrO₂ /SiO₂多层介质反射膜为例,研究了不同工艺 条件及不同膜系结构下薄膜的光学损耗及激 光损伤阈值,并对二者间的关系及相关机理 作了初步的探讨。

二、实验方法

样品一律蒸镀在 K。玻璃基底上。相关 •468 • 膜系设计及工艺条件如表1所示。

薄膜吸收测量采用脉冲光热偏转技 术^[3,4]。实验装置布局为共线式,即泵浦光 (Nd:YAG, λ =1.06 μ m)与探测光(He-Ne, λ =632.8 nm)相互平行并近似共线^[4],如图 1 所示。

用这种方法测量多层介质膜的光吸收, 灵敏度达 A~10⁻⁵, 重复精度优于 10%。

收稿日期: 1988年12月5日

样品序号	材 料	熯系结构	制备	膜料折射率		
<i>S</i> 1	1210	De Cali	8 1 28 1	Ts: 冷基板 T _A : 室 温	Salt Bud	
\mathcal{S}_2	a loat ea			Ts: 冷基板 Ta: 400°C		
\mathcal{S}_3	H: TiO ₂ L: SiO ₂	A(HL) ³ HS	电子束热蒸发 -	Ts: 200°C T _A : 室 温	n _H =2.46	
S_4				Ts: 200°C TA: 400°C	n _L =1.40	
S_5	a7 1 8:87 1 8:13	A(3HL) ³ 3HS		$T_{S}: 200^{\circ}C$ $T_{A}: 400^{\circ}C$	Log ort	
- S ₆	6位这句诗在多》 《英作用》:《2》	A(H3L) ³ HS	中产空管算	$T_{S}: 200^{\circ}C$ $T_{A}: 400^{\circ}C$	名品前三年提	
87	H: ZrO2 L: SiO2	A(HL)SHS	电子束热蒸发	Ts: 冷基板 Tx: 室 温	將到可且落款。 率, 8, 長余案	
S_8				Ts: 冷基板 TA: 200°C	中产空行资金	
S_9				Ts: 200°C Ta: 室 温	n _H =1.90	
S ₁₀		-7122 87		$T_{S}: 200^{\circ}C$ $T_{A}: 200^{\circ}C$	n _L =1.46	
S ₁₁	「中心」の対象の	A(3HL) ³ 3HS		<i>Ts</i> : 200°C <i>T_A</i> : 200°C	an classifi	
S ₁₂	12.00 0021	A(H3L) ³ HS	产空主气流	Ts: 200°C TA: 200°C	法, 而於, 到	

表1 被测样品膜系结构、工艺条件及相应膜料的折射率

Ts: 基板烘烤温度; TA: 成膜后空气中烘烤温度。

薄膜总积分散射测量是在本所研制的激 光薄膜散射测量仪上进行的。该仪器以 He-Ne(λ=632.8nm)激光为光源,采用光 调制弱信号同步锁相技术,灵敏度达10⁻⁵,相 对测量误差优于15%^{15,69}。

激光损伤实验装置如图 2 所示。激光系 统由 Nd:YAG 振荡器和 两级 Nd:YAG 放 大器组成。振荡器采用 LiF 晶体调 Q,小孔 光阑选模,输出波长1.06µm,脉宽(FWHM) 10 ns,工作于单模状态。入射光束由一消像 差非球面透镜(f~80 mm)会聚于样品表面, 光斑直径(1/e²)为 44µm。薄膜的损伤情况 由置于其后的高倍显微镜观察判断。损伤实 验中,在样品表面上同一位置只照射一次激 光,而不管这一点发生破坏与否。薄膜损伤 阈值定义为两个极值的平均值,即使薄膜破 坏的最低能量和不能使薄膜破坏的最高能量 两者的平均值。

闻道>5. 周创。我们对进一股条的

、实验结果及讨论

被测薄膜样品光学损耗及激光损伤阈值 测试结果如表2所示。

AFOR ASTRON

由表2可以看出:

 对TiO₂/SiO₂多层介质膜系,当膜系 结构相同时,薄膜光学损耗与激光损伤阈值 都与工艺条件有明显的关系,其主要规律有:

上市场政计划。	一 样 一 一 一 一 一					外 118-3	品				A	
被 测 项	<i>S</i> ₁	S2	S_3	84	S_5	S_6	87	S_8	S_9	S10	S11	S ₁₂
A Station								果				
吸收率 (10-4)	$\substack{8.7\\\pm0.6}$	7.6 ± 0.6	8.8 ± 0.5	$\begin{vmatrix} 7.1 \\ \pm 0.5 \end{vmatrix}$	$9.5 \\ \pm 0.8$	7.6 ± 0.7	$\substack{6.1\\\pm0.7}$	5.9 ± 0.5	6.0 ± 0.6	5.8 ± 0.6	9.8 ± 1.2	6.2 ± 0.6
散射率 (10-4)		4.83 ± 0.35	-	3.28 ± 0.27	6.58 ±0.72	3.15 ± 0.22	-	8.15 ± 0.31	H. IN	7.83 ± 0.25	$12.1 \\ \pm 0.31$	6.65 ±0.19
损伤阈值(J•cm-2)	8.5 ± 2.1	11.5 ± 2.2	10.4 ±1.6	13.8 ± 1.8	7.0 ± 1.6	$15.2 \\ \pm 1.8$	$11.6 \\ \pm 3.6$	$14.2 \\ \pm 4.1$	$11.5 \\ \pm 3.8$	$16.2 \\ \pm 1.9$	$\begin{array}{c} 10.3 \\ \pm 3.1 \end{array}$	18.4 ± 1.6

表 2. 薄膜样品光学损耗及激光损伤阈值测试结果

(1)基板烘烤有助于改善散射损耗(样品S₄ 散射率<样品S₂散射率),而成膜后空气中 烘烤则可显著减小吸收率(S₂吸收率<S₁吸 收率;S₄吸收率<S₃吸收率);(2)基板烘烤 与成膜后空气中烘烤都有助于提高TiO₂/ SiO₂多层介质膜的激光损伤阈值。后者源于 烘烤明显碱少了吸收,前者则可能由于改善 了膜层微结构和内应力。

2.对 ZrO₂/SiO₂ 多层介质膜系,当膜系 结构相同时,薄膜光学损耗与制备工艺基本 无关,面激光损伤阈值却由于成膜后在空气 中烘烤而得到了显著的提高(S₁₀ 阈值>S₂ 阈 值,S₂ 阈值>S₇ 阈值)。我们对这一现象的 解释是:烘烤不仅改善了ZrO₂ 膜的结晶构 造,而且使不同材料之间的内应力消除得最 好,因而提高了抗激光损伤能力。

3. 当工艺条件相同时,光学薄膜的激光 损伤阈值显著依赖膜系结构(S。阈值>S4 阈 值>S5 阈值; S12 阈值>S10 阈值>S11 阈值)。 这是由于高折射率膜层厚度的增加显著加大 了吸收损耗,从而降低损伤阈值;而低折射率 膜层厚度的增加,有助于改善薄膜样品的界 面结构⁶⁷³和补偿强激光作用下产生的热应 力⁶⁸³。

由表2可进一步看出:

(1) 散射损耗较低的样品一般具有较高的损伤阈值。由于散射损耗通常表征样品的表面形貌与微观结构,这一实验结果说明,样

据导工艺统体布到是的关系;这中都很伟大;

品表面形貌与微观结构在多层介质膜的激光 损伤中起着重要作用。.

(2) 薄膜激光损伤与光吸收的关系呈复 杂状态。一方面,对TiO₂/SiO₂ 膜系,损伤阈 值一般随吸收的增加而降低,说明吸收在损 伤过程中起着主导作用。这一结论与我们前 期对TiO₂ 单层膜的研究结果是一致的^[9]。另 一方面,对本文工艺条件下的ZrO₂/SiO₂ 膜 系,多数情况是:吸收基本不变的条件下损伤 阈值发生了显著的变化。这一现象说明:在 本文所研究的ZrO₂/SiO₂ 膜系激光损伤过程 中,起主导作用的是除吸收之外的其它因素, 如膜层的结晶构造^[16]。

作者感谢范瑞英、陆月妹、高扬、陈奕升、 李成富、施柏煊、李仲伢等同志在样品制备及 测试过程中给与的有益帮助和讨论。

参考文献

- C. K. Carniglia, Thin Film Technologies II, 1986, SPIE Vol. 692, p. 202
- 2 H. E. Bennett et al., Appl. Opt., 25(2), 258(1986)
- 3 D. L. Balageas, J. Appl. Phys., 59(2), 348(1986)
- 4 W. B. Jackson et al., Appl. Opt., 20(8), 1333(1981)
- 5 陈奕升,王文桂,中国激光,12(3), 183(1985)
- 6 Y. S. Chen, W. G. Wang, ICO-13 Conference Digest, 1984, p.546 (Sappore, Japan)
- 7 Z. L. Wu et al., NBS Spec. Publ., to be published
- 8 E. Welsch et al., Thin Solid Films, 152, 433(1987)
- 9 施正荣,范正修,邓和,中国激光,15(1),22(1988)
- 10 范正修, 激光, 9(9), 582(1982)

这平远信, 即位平安